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J .  Phys. A: Math. Gen. 14 (1981) 133-143. Printed in Great Britain 

Quantum bounds on the information capacity of 
narrow-band free-space links without extraneous noise 

W G Chambers 
Department of Mathematics, Westfield College (University of London), Kidderpore 
Avenue, London, NW3 7ST, UK 

Received 10 June 1980 

Abstract. An upper bound for the information rate in a communication link is set by the 
finite number of orthogonal states available to the electromagnetic field, if the link is subject 
to constraints on the average power and bandwidth. This bound may not be attainable in a 
free-space link since the transmitter does not have complete control over what is received. 
Some hypothetical systems arz examined to see how close they get. At high photon rates i t  is 
possible with difficulty to improve slightly on an ‘x -p ’  system, and at low photon rates on a 
photon-detecting system, but it seems that these systems are nearly the best, and certainly 
they are not far below the upper bound, in the sense that the ratios of the information rates 
to the maximum are close to unity. In all these systems the normal modes (Planck 
oscillators) are treated as independent channels. It is suggested that a beam splitter can 
provide a simple model for a free-space link. 

1. Introduction 

One would expect an upper bound on the information capacity of an electromagnetic 
link (subject to an average-power constraint) because of quantum effects, even if there 
were no extraneous noise (Gordon 1962, Yu 1976). We might fancifully assign this 
limitation to ‘photon shot noise’, although more precisely it is due to the finite number 
of orthogonal quantum states available to the electromagnetic field when subjected to 
limitations of space, time and energy. It seems that this bound can be approached 
arbitrarily closely for guided-wave links. However, in free-space links only a small 
fraction of the transmitted energy is received, and one might expect that there is added a 
kind of ‘partition noise’, because some photons hit the receiving antenna while others 
miss, or because the transmitter does not have complete control over what is received. 
This presumably reduces the capacity of the channel below the bound just mentioned, 
and the question is by how much. As a partial answer we discuss some lower bounds for 
the capacity, in the limiting cases when the photon rate is very low and when it is very 
high. These lower bounds are obtained by considering hypothetical transmitter- 
receiver systems. In each case we consider synchronous links when there is available to 
both transmitter and receiver a common reference clock-oscillator, and for comparison 
‘photon-counting’ links. The basic quantum theory may be found in Helstrom (1976). 
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134 W G Chambers 

2. The upper bound 

We first imagine that the transmitter sends the receiver a succession of well-separated 
particles of spin S. Each particle thus can be put into one of 2 s  + 1 orthogonal spin 
states by the transmitter, and the receiver can determine with certainty the state of each 
particle. Thus each spin state can represent a letter in an alphabet of 2 s  + 1 letters, and 
the maximal rate of transmission of information is ln(2S + 1) natural units per particle (if 
the time of arrival of the particles is not used). 

Let us next imagine a very long waveguide carrying a unidirectional stream of 
electromagnetic waves of mean frequency Y ,  bandwidth B i  ( B  << v), and average power 
P. Suppose this system is chopped up into lengths with duration T ( T  >>B-’). Then 
each length can be regarded as a ‘particle’, although since it is a macroscopic system it 
has an enormously large number N of orthogonal quantum states available to it. 
However, the logarithm of this number can be calculated by the same mathematics as is 
used to calculate the entropy of a microcanonical ensemble, with a given total energy PT 
(Kubo 1971, Takahasi 1965). It is found that 

lnN=BT[(ri+l)In(ri+l)-ii lnri], 

where 

ri = P/hvB 

is the photon rate divided by B, or the average number of photons in each normal mode 
or Planck oscillator$. The usual postulates of quantum theory permit us to imagine that 
the link using spinning particles could be set up, so there seems no basic objection to the 
setting up of the electromagnetic link just described. The result is equivalent to the 
zero-temperature value of the capacity given by Gordon (1962). The rate C,,,, is given 

(2) 
We would also expect this formula to provide an upper bound for the capacity of a 

free-space link, since the waveguide could be placed between the receiving antenna and 
the receiver proper. (Naturally the power P is the received power!) Presumably the 
receiver cannot receive information at a rate higher than that conveyed by the 
waveguide. 

Let us next imagine an arrangement where each of the BT normal modes or Planck 
oscillators acts as a separate channel, used once every T seconds, and with an average 
photon number given by (1). We may code the channel by putting the oscillator into 
various eigenstates of the photon number operator, which can in principle be deter- 
mined precisely by measuring this dynamical variable. If we then choose the prob- 
abilities to maximise the information rate subject to the average number being ii, we 
find that the rate is given by (2) (Takahasi 1965). The use of such a particular 
arrangement provides us with a way of finding a lower bound for the capacity, and in this 
instance this happens also to be the upper bound, which therefore seems attainable in 

by 
C,,,/B = (ri + 1) ln(A + 1) - A  In ri. 

t It is assumed that there is only one polarisation in use. If both polarisations are used, then we have to 
redefine B to be twice the bandwidth. 
i: To specify the state of such an oscillator in classical theory we need a complex number or two real numbers 
to give the amplitude and phase. In some treatments each oscillator is made to correspond to two normal 
modes with real amplitudes. We only consider normal modes with positive wavenumbers, because of the 
unidirectional propagation. 
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principle. In all the arrangements to be described we shall again regard each normal 
mode as a separate channel, so that we need only consider a single normal mode in 
isolation from the others. In a free-space link the receiving oscillator may be put into 
any chosen ‘coherent state’ (Glauber 1963), but the idea just described fails because 
these states are not orthogonal. 

Approximations to (2) for large E and small E will be needed. These are, for large A 

(3)  c,,,/B = In E + 1 + o(E-’), 

and for small ii 

c,,,/B = E ln( l / i i )  + E + 0(2). (4) 

3. Beam splitters and coherent states 

We may model the tremendous attenuation of a free-space signal on its journey from 
the transmitter to the receiver by means of a beam splitter. We consider only one 
particular normal mode and its corresponding wave-packet. A beam splitter divides an 
incident wave-packet into two outgoing wave-packets on separate outputs. The first 
output goes to the receiver and the other is lost. (There is another input for the beam 
splitter, but this is not used here.) Let U denote the unitary evolution operator which 
transforms initial states into final states. The vacuum state I $ v a c )  is supposed not to 
change, so that changes into a linear 
combination of single-photon output states h lb :  ~$vac )+A2b~($vac ) .  Here A I  and A 2  are 
the complex amplitudes for the outputs with unit input, a’ is the creation operator for a 
photon in the input wave-packet, and b: and b: are creation operators for photons in 
the output wave-packets. We assume [b,, b:] = Sf, and [b,, b,] = 0, and because of 
normalisation we find Ih:l+ IAiI  = 1. (Naturally we expect lh1I2 to be very small.) More 
generally we set Ua’Ut = Alb: +A2bi ,  so that an incident I-photon wave-packet 
I$/) = (I!)-1/2(a+)‘I+vac) will evolve into 

= I $ v a c ) .  A single-photon input a 

U[$( )=  (1!)-”2(Ua’Ut)‘UI$,,c:= (l!)-1’2(Aib; +A2b:)’l$vac). 

The transmitted power is usually high enough to let us regard the input signal 
classically, with a well-defined complex amplitude. This is modelled by allowing the 
input state to be a ‘coherent’ state (Glauber 1963) 

where K(a’, a )  stands for the operator exp(aat-$ja/2).  (Note that 10) = = I $ v a c ) . )  
Here a is the complex amplitude, which will be referred to as the ‘a-value’ of the 
coherent state. The initial density matrix is then pi = Ia)(a I, which evolves into the final 
density matrix pf = Ula)(alUt. The state V i a )  is obtained by replacing a t  by Ua’U’, 
and so by ( 5 )  we find 

U / a  ) = K ( Ua U’, a ) I $ v a J  = K ( b  :, A ia )K ( b  i, Aza)I$vac) 

by factorising the exponential K(UatUt,  a ) .  Thus Ula) can be regarded as a direct 
product of coherent states on the outputs, and so pf factorises into a direct product of 
density matrices. This factorisation means that measurements made on the two output 
channels will give independent results; this fact will be used in the next section. In the 



136 W G Chambers 

present context the second output is not used, and so we take a partial trace over the 
states of the second output. Hence its density matrix is replaced by unity, and we are left 
with a reduced density matrix corresponding to the first output being in a coherent state 
with U-value Ala. Thus the receiver may be put into any specified coherent state. 

In a photon-counting system we are interested in the probability distribution of the 
number of photons. For a coherent state with U-value U the probability of finding m 
photons is easily shown to be the Poisson distribution 

(6) pm = ( m  !)-*Nm exp(-N), 

where N = Icy 1' is the mean number of photons. 
In most cases the absolute phase of the received carrier has no significance, as the 

distance of the transmitter is not determined to within a fraction of the wavelength of 
the carrier. However, the relative phases of the various normal modes need not be lost. 
The overall receiver density matrix is an outer product of BT density matrices, one for 
each normal mode, if the normal modes are used in a statistically independent manner, 
and we should then average this product over all phases of Al. This is very different 
from averaging each density matrix over the phase of A1,  which then diagonalises it in 
the number representation, so that the system counts the photons in each normal mode. 
Probably only a few of the BT normal modes need be given over to providing a phase 
reference for the carrier, so that in principle the information rate hardly falls at all. 
However, although of interest, this problem is not strictly relevant to the present 
discussion. 

This is a convenient place to summarise some required properties of the coherent 
states (Helstrom 1976). The expectation value of the photon number is given by 

( 7 )  (Ula+ala)=lal 2 . 

(a lp) = exp[i ~ m ( a * p ) ]  exp(-ila -pI2). 

D(y )=exp(ya+-y*a )  

The overlap integrals are given by 

(8) 

A unitary displacement operator D ( y )  with y complex can be defined by 

so that i y )  = D(y)lO). This operator has the composition rule 

D ( y ) D ( S )  = D ( y  + S )  exp[-i Im(y"8)l. (9) 

4. The 'x-p' detector 

A simple synchronous receiver was described by Takahasi (1965). (See also Arthurs 
and Kelly (1965).) The signal is evenly split by a beam splitter and used to excite two 
oscillators. In one oscillator we measure the 'x coordinate' (the hermitean operator 
2-"'(a +a t ) ) ,  and in the other the ' p  coordinate' (2-1/2(a - u')/i). With a received 
signal represented by the coherent state / A ) ,  with A equal to A'fiA", the oscillators are 
each put into a coherent state with an U-value 2-'/'A. Moreover, for reasons given in 5 3 
the results of the measurements are independent. (This is true even if we measure the 
photon numbers of the two outputs; these results would not be independent if the input 
was an eigenstate of the photon number, with a definite number of photons.) In the 
Schrodinger representation (with p = -id/dx) the wavefunction satisfies a$ = 
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2 - ’ I L ( x  +d/dx)$ = (2-”2A)$, so that 1 ~ 1 ’  is proportional to exp[-(x -A’)’]. Since 
( x ) = A ’ ,  we may imagine that a measurement of x is directly a measurement of A ’ ,  
so that a detected value A :  comes up with a probability density proportional to 
exp[-(A: -A*’)’]]. Similarly the p measurement determines A ” ,  and overall in the 
complex a plane the probability density of detecting cy, when cy comes in is just 
( rR2)-’  exp(-la, -a/‘/R’), with R = R N  = 1. It is as though there is Gaussian noise. 
It is well known (Yu 1976) that, subject to the restriction that the average number of 
photons is 6, the maximum information is obtained by choosing a similar Gaussian 
probability density ( rR2)-’  exp(-la 1’/R2) for the values of cy coming in, with R = Rs = 

. The information is then ln[(RL+ R:)/RL] = ln(1 + 5). This is the information 
sent every T seconds by each of BT normal modes, and hence it is the value of C/B, 
where C is the rate and B the bandwidth. 

For large values of 6 this gives C/B  = ln(fi) + 0(5 - ’ ) ,  which compares favourably 
with the upper bound (3). For very small values of A it is not so good because C/B =E, 
much less than the right-hand side of (4). It is advantageous at low levels to use the null 
signal a = 0 with high probability, and this condition is not detected faithfully, that is, 
there are ‘false alarms’. 

5 112 

5. ‘Lattice’ system for large fi  

The coherent states la) may be represented by points (x, y )  in the xy plane, with 
a = x + iy.  Let us suppose (for a given normal mode) that we use a system where the 
possible receiver states are coherent states represented by points r, forming a square 
lattice with squares of area A. Suppose also (for the moment) that the corresponding 
coherent states are orthogonal, so that in principle at least there is a quantum 
observable whose measurement can distinguish these states with certainty (Dirac 
1958). Then if the ith point is used with probability p, ,  we have to maximise the entropy 
- Z p ,  In p i  subject to the conditions Zpl = 1, Zp,n,  = 5, where n , ( = r f )  is the expectation 
value of the number of photons for this point. We find that p l  aexp(-A -Fn l )  = 
exp(-A -Fr?) ,  where A and p are Lagrange multipliers chosen to satisfy the con- 
straints. In the case when 6 >> A the lattice points are in effect closely spaced, so that the 
sums can be replaced by integrals. If we put p ,  = (rR’)-’ exp(-r?/R’)A with R to be 
determined, we find that C p ,  becomes 

(rR2)-’  I/ exp(-r2/R2) d2r = 1. 

Similarly %zip,  becomes 

(rR2)-’ I! r2 exp(-r2/R2) d2r = R2,  

so that R = 5’”. A similar evaluation gives for the information (Shannon 1948) 

- 1 pi In pi = In t? + 1 - ln(A/r),  (10) 

which is then also the value of C/B, where C is the rate. At least the moderately 
dominant In A behaviour in (3) is also found here. The problem is choosing a value for 
A. The coherent states are not orthogonal, but because of the Gaussian behaviour of 
the overlap integrals they should be effectively orthogonal for A large enough. 
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However, with this periodic arrangement of the points representing the coherent 
states we can set up a genuinely orthogonal set of states, by the use of techniques from 
solid state band theory (Ziman 1964). Any lattice point in the square lattice may be 
written as (a, b)A1I2, where a and b are integers, and so if we define the unitary 
displacement operators 

T ( U ,  b )  = D[(a +ib)A‘I21, 

we find from (9) that 

T ( U ,  b)T(a’, b’)  = T ( U  +a ’ ,  b + b’) exp[-i(ab’- ba’)A]. (11) 

Because of the phase factors, these operators do not in general form an ordinary 
Abelian translation group, but instead a ‘magnetic translation group’ of the sort studied 
in the 1960s in connection with the motion of charged particles in a magnetic field and in 
a periodic lattice (Brown 1964, Zak 1964). If A is given a value 7 ~ A / p ,  where A and p 
are integers with no common factors, then it is straightforward to show that ~ ( 1 ,  0) and 
~ ( 0 ,  p )  commute, and thus can be used as a basis for a superlattice. We have a choice for 
the value of A, and in this paper we shall choose the simplest cases, p = 1 with A = 1 or 2 .  
For h even, the phase factors in (1 1) are always unity and we have the usual situation. 
For A odd, the phase factor can be either 1 or -1. 

The basic method is as follows. We use the translation group to produce from the 
coherent states a set of automatically orthogonal Bloch functions. These are then 
normalised, and used to produce a set of automatically orthonormal localised states 
(Wannier functions). It is convenient to define e ( x )  = exp(27~ix), and it is worth noting 
that e(iA) = e(-$A) for integral A. We also impose periodic boundary conditions over 
an enormous square of N x N lattice points. 

We define the Bloch states 

where p and q are integers divided by N, and 10) is the coherent state with U-value zero. 
The vector is periodic in p and q with period 1, and so we confine p and q to a 1 x 1 
Brillouin zone. It is not hard to show that 

and thus for p f p f  or q f q’ we find that and l $ p f q O  are orthogonal as they are 
eigenvectors of unitary operators with different eigenvalues. It is also worth noting that 
I&,) is simply a linear combination of rephased coherent states 14a6)= 
e(-$Aab)T(a, b)10) on the lattice. We define the norm ypq = ( $ p q l $ p q )  which must be 
real and positive. Thus we find 

where MAE = (017(A, B)IO) = exp[-$A(A2+B2)] by (8). We may therefore divide 
by y; i2  to produce an orthonormal set of Bloch waves, and from these the Wannier 
functions 

I W a b ) = N - l  c e(-aP-wy;;/21$p,) 
P 9  



Quantum bounds on information capacity 139 

which are then orthonormal. Finally we need the overlap integrals with the coherent 
states 

( W a b l 4 a ' b ' ) = N - ' C  e [ P ( a  -a ' )+q(b -b ' ) l y i ; '  
P 4  

which are thus translationally invariant. We set 

J(r /  -ri) = ~ ( W a b ~ ~ a ' b ' ) ~ ' ~  

where r, = (a ,  b)A'/' and r, = (a ' ,  b')h'/ ' .  It is worth mentioning that the Bloch states 
can be rephased, so that we can include an arbitrary function exp(iO,,) in the above 
summation. However, it can be shown that the choice O,, = 0 minimises the sum 

C (a2+  b2)1(Wab10)1' or c r;J(r / )  
ab I 

The operation of the link is as follows. The transmitter puts the receiver into a 
coherent state represented by r,. The detector then makes a measurement for which the 
Wannier functions form an orthonormal basis, and so returns a result r, with probability 
J ( r ,  - r , )  (Dirac 1958). The Shannon (1948) formula then gives 

with 

where p c  is the probability of the point r, being used, q ( j l i )  = J(r ,  - r , )  is the probability 
of the point r, being received given that r, was actually used, and q, is the probability of 
the point r, being received. We take p i  as before with a Gaussian distribution of radius 

. If the range of the overlap J ( r , - - r , )  is very much less than this, we may 
approximate q, by p,, which in fact reduces the first term and so lowers the result. We 
obtain by (10) 

i i l / 2  

C / B  L- In ii + 1 - In(A/ir) -E,  

where E is an 'equivocation' given by the second term in (12a) ,  that is, 

E = - C J (  r , )  In J(r , ) .  
I 

The obvious value of A to choose is A = 1, which gives A = T.  Unfortunately this leads to 
trouble as it seems that ypq vanishes for p = q = t ,  or very nearly. (This is equivalent to 
the result 

(-l)a+b+ab exp[- &r ( a  + b 2 ) ]  -- 0 
ab 

which is easily verified numerically. However, the author has no proof that it is zero!) If 
yp4 does vanish, then the coherent states must be linearly dependent. A similar result is 
found in the hexagonal lattice, and it seems that the coherent states have been placed 
too close. 

The next value to try is the rather tame case A = 2 ,  so that the phase factors in (11) 
can be quietly forgotten. An even greater simplification takes place as the two- 
dimensional Fourier transforms factorise into products of one-dimensional transforms, 
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and so the computing is trivial. This time A = 27-r and the result is 

C / B  =In E + 1 -In 2-0.01621 =In E +0.2906. 

This is a lower bound which could probably be improved. Thus a hexagonal lattice 
may well be better. We might also try values of A / p  between 1 and 2, say 1. (A very 
rough calculation suggests that it may be possible to increase C/B  by about 0.2.) 
Unfortunately the theory is more complicated, involving eigenvalues and eigenvectors 
of p x p  matrices, and the phasing problem briefly mentioned above becomes more 
serious. 

6. Photon-counting link for large ii 

This brief section is put in mostly for comparison with the last. As we might expect, the 
rate is about half that of the last section, that is, C / B  = $ I n  5, since the information 
about the phase of the carrier for each normal mode is lost, leaving only the information 
about the magnitude. An approximate answer for E >> 1 can be derived as follows. 

If the ith transmitted symbol is arranged to give an average reception of n, photons, 
then by (6) the probability of receiving exactly i photons is Q, = ( j ! ) - * n i  exp(-a,), and 
the probability SO of receiving a count in a range S j  about i is SQ=Q,Sj (with 
1 << Si << n :’2). We set x, = j1’2, x = n t’2. By applying Stirling’s formula and a second- 
order Taylor expansion to In Q, and by putting Si = 2x,Sx,, we find 

SQ = (27-r)-’122 exp[-2(xr - x ) ~ ] S X , .  

Thus we have a situation similar to that in 8 4, with Gaussian noise, except that ( a )  x, 
and x are real, not complex, ( b )  x, and x are restricted to positive values, and (c) the 
value of R’, is i. The first problem can be circumvented by artificially pairing the 
normal modes (so that R: = 2E) ,  and the second Sy allowing x and x, to have either sign 
and then throwing away the information conveyed by the sign. In consequence the 
information per pair is about ln[(R’,+R~)/R’N]=ln(45), so that the final answer is 
roughly i ln(4E) -In 2 = :In E. 

7. Links with small ii 

For 5 << 1 we first consider a ‘photon-detecting’ link against which to compare a 
synchronous link. We use two transmitted symbols i = 0 and 1 say, with no = 0 (a null) 
and n1  = E / &  where the parameter p is the probability that i = 1, so that p o  = 1 - p .  
(Naturally n1 is greater than or equal to E. )  The receiver gives two outputs, j = 0 for no 
photon received, and j = 1 for one or more photons received. A photon detector is not 
quite as good as a photon counter, but for small values of 5 it is hard enough to receive 
one photon, let alone two or more, so there is scarcely any loss of performance. The 
conditional probabilities q( j ( i )  are by the Poisson distribution (6) q ( O / O )  = 1, q(110) = 0, 
q(O11) = exp(-nl), q(l l1) = 1 -exp(-nl). We then maximise (12) with respect to p, 
keeping A fixed. 

For a synchronous link we imagine that we can put the receiver into one of N + 1 
coherent states lac), lao), . . . , lalv-1) with a ,  = 0 ,  ffk = n : I2  exp(27iklN).  We assign 
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probabilities A/Nnl to the outer points and 1 - E/nl  to the central point a ,  = 0. As in 0 5 
we take orthogonal linear combinations of these states and assume that there is a 
measurement process corresponding to this basis. The new centre state Ib,) may be 
chosen as la,) or the linear combination /a,)+N-’A C, la,), where A is an arbitrary 
complex number. (This mixing does not gain much over A = 0 and is hardly worth the 
bother.) Then we orthogonalise the states la,) of the outer ring to 16,) by setting 
Ib,) = la,)-plbc) and choosing p so that (b,lb,) = 0 for j = 0, . . . , N - 1. Then we may 
use the Ib,) to set up automatically orthogonal Bloch functions round the ring, which we 
normalise and use to form localised Wannier functions which are also automatically 
orthogonal. The results are as follows (with the numerical subscripts evaluated 
mod N ) .  The overlap integrals are obtained from (8) and are given by 

The norm 1712 of /bc)  is given by 

I 77 l 2  = I,, + A + A I:, + / A  l 2  1 IJN.  
i 

The quantity p is given by p 177 l 2  = I &  + A * C j  I,/N. The quantities Kk and yi are defined 
by 

and 

y, = N-’ 1 e(kj/N)K:”. 
k 

We obtain q(jl i)  = ly,-l12, q(c/i)  = lp12/v12, q( j /c )  = /Ai2Ko/N2, q(c/c) = /vI2/1 -ApI2 for 
the conditional probabilities for j or c given i or c. These results are then used in the 
Shannon formula (12) with pl = A/Nnl and p c  = 1 - A/nl. 

The upper bound for A << 1 is given approximately by (4), so that C,,, tends to zero 
like - A  ln(A) as A tends to zero, and so do the other values for the rates. Therefore to 
illustrate the results we have plotted the ratios C/C,,, against f i  on a log-linear plot 
(figure 1). For very small values of A the rate for the photon detector is up to 
75% of C,,,, and in fact it can be shown that the ratio C/C,,, tends to unity very slowly 
as A + 0, an interesting result perhaps, but not of much practical interest. The other 
curve shows the corresponding result for the synchronous link with N = 4, and evidently 
it is not much better, especially for A small. (Here the maximisation was carried out 
with respect to n l  and A. )  Other choices for N,  the number of outer points on the ‘star’, 
give very similar results, and in fact it seems that for very small values of A lower values 
of N are slightly better, although the difference would not show on  the graph. 

8. Concluding remarks 

We have discussed some links which have rates quite close to the theoretical upper 
bound, at least in the limits of low and high photon rates. At  high rates the ‘x-p’  
detector works well, and at low rates the ‘photon detector’. It is also evident how in 



142 W G Chambers 

t 
1 10-2 lo- ‘  10-6 10-8 

n 

Figure 1. Information rates divided by the upper bound C,,, (equation ( 2 ) )  against ii 
(equation (1)) at small values of A, ( a )  for a ‘photon-detecting’ system, ( b )  for the ‘star’ 
coherent system with N =4. Both these systems are described in 5 7. 

principle such receivers might be constructed. (A description of a complete ‘x-p’  
receiver is given by Takahasi (1965).) We have postulated systems that can do slightly 
better, but there is no obvious way in which they might be constructed. How close are 
they to the optimal for a free-space link? The very difficulty of making any improve- 
ment seems to suggest that they are fairly close. It might be worth emphasising that the 
ratios of the rates to the maximum approach unity for both large and small f i .  

The results for low photon rates ( f i  << 1) seem to be the most interesting. The author 
at least is surprised by how good the photon detector is, and by how little better the 
coherent ‘star’ system is. This is in contrast with what happens for large 5. The fact that 
in a coherent system the transmitter can put the receiver into any chosen ‘coherent’ 
state suggests that there should be complete control over what is received. An analogy 
based on the ‘spinning-particle’ system of 8 2 shows that this need not be so. For 
simplicity let us choose spin-; particles. If the transmitter can send a particle with any 
given direction of spin, then, by choosing the orthogonal spin-up and spin-down states, 
a noise-free link is established. But if the transmitter is restricted to sending particles 
with the spin direction restricted to lie within a certain small angle from the z axis, then, 
although the transmitter may have perfect control over the spin state of each particle 
sent, the receiver will suffer from quantum uncertainties. (Such a restriction would arise 
if there was an energy constraint, and if the particles possessed a spin magnetic moment 
and were in a magnetic field parallel to the z axis.) 
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Note added in proof. Since the submission of this manuscript Professor J Brown (Imperial College, University 
of London) has proved that the Gaussian sum in § 5 which was conjectured to vanish does indeed do so 
(private communication). 
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